DPP - 1

Video Solution on Website:-

Video Solution on YouTube:-

https://physicsaholics.com/home/courseDetails/37

https://youtu.be/YoUsWWIAfVc

https://physicsaholics.com/note/notesDetalis/49

Q 1. Three particles of masses $1.0 \mathrm{~kg}, 2.0 \mathrm{~kg}$ and 3.0 kg are placed at the corners A, B and C respectively of an equilateral triangle $A B C$ of edge 1 m . Location of the center of mass of the system from B

(a) $\left(\frac{7}{12} m, \frac{\sqrt{3}}{12} m\right)$
(b) $\left(\frac{\sqrt{3}}{12} m, \frac{7}{12} m\right)$
(c) $\left(\frac{\sqrt{3}}{6} m, \frac{7}{6} m\right)$
(d) $\left(\frac{7}{6} m, \frac{\sqrt{3}}{6} m\right)$

Q 2. Find position of center of mass of four identical particle system, which are at the vertices of parallelogram, as shown in figure

(a) $\left(\frac{a+b \cos \theta}{2}, \frac{b \sin \theta}{2}\right)$
(b) $\left(\frac{a+b \sin \theta}{2}, \frac{b \cos \theta}{2}\right)$
(c) $\left(\frac{b+a \cos \theta}{2}, \frac{a \sin \theta}{2}\right)$
(d) $\left(\frac{b+a \sin \theta}{2}, \frac{a \cos \theta}{2}\right)$

Q 3. Find the position of center of mass for a system of particles places at the vertices of a regular hexagon of side ' a ' as shown in figure (consider point F as origin, $F C$ as x axis and hexagon is in xy plane.)

(a) (a, a)
(b) $(0, a)$
(c) $(a, 0)$
(d) $\left(\frac{a}{2}, \frac{a}{2}\right)$

Q 4. Four particles of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}, 3 \mathrm{~kg}$ and 4 kg are placed at the four vertices A, B, C and D of a square of side 1 m . Find the position of center of mass of the particles

(a) $(0.5 m, 0.5 m)$
(b) $(0.3 \mathrm{~m}, 0.3 \mathrm{~m})$
(c) $(0.3 \mathrm{~m}, 0.5 \mathrm{~m})$
(d) $(0.5 \mathrm{~m}, 0.3 \mathrm{~m})$

Q 5. Particles of masses $\mathrm{m}, 2 \mathrm{~m}, 3 \mathrm{~m}, \ldots \mathrm{~nm}$ are placed on the same line at distances $\mathrm{L}, 2 \mathrm{~L}$, 3L.)..., nL from O . The distance of center of mass from O is
(a) $\left(\frac{2 n+1}{4}\right) L$
(b) $\left(\frac{1}{2 n+1}\right) L$
(c) $\mathrm{n}\left(\frac{n^{2}+1}{2}\right) L$
(d) $\left(\frac{2 n+1}{3}\right) L$

Q 6. Center of mass of 3 particle $10 \mathrm{~kg}, 20 \mathrm{~kg}$ and 30 kg is at $(0,0,0$,$) . Where should a$ particle of mass 40 kg be placed so that the combined center of mass will be at $(3,3,3)$
(a) $(0,0,0)$
(b) $(7.5,7.5,7.5)$
(c) $(1,2,3)$
(d) $(4,4,4)$

Q 7. Two particles whose masses are 10 kg and 30 kg and their position vectors are $i+\hat{\jmath}+$ \hat{k} and $-i-\hat{\jmath}-\hat{k}$ respectively would have the center of mass at -
(a) $-\frac{i+\hat{\jmath}+\hat{k}}{2}$
(b) $\frac{i+\hat{\jmath}+\hat{k}}{2}$
(c) $-\frac{i+\hat{\jmath}+\hat{k}}{4}$
(d) $\frac{i+\hat{\jmath}+\hat{k}}{4}$

Q 8. The center of mass of two particles lies
(a) at the midpoint on the line joining the two particles
(b) on a point outside the line joining the particles
(c) at one end of line joining the two particles
(d) on the line joining the two particles

Q 9. The four particles of masses $m, 3 \mathrm{~m}, 2 \mathrm{~m}$ and 4 m are placed on the vertices of a square of side a. Locate the center of mass

(a) $\left(\frac{a}{2}, \frac{a}{2}\right)$
(b) $\left(\frac{7 a}{10}, \frac{a}{2}\right)$
(c) $\left(\frac{a}{2}, \frac{7 a}{10}\right)$
(d) $\left(\frac{7 a}{10}, \frac{7 a}{10}\right)$

Q 10. Masses $8 \mathrm{~kg}, 2 \mathrm{~kg}, 4 \mathrm{~kg}$ and 2 kg are placed at the corners $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ respectively of a square ABCD of diagonal 80 cm . The distance of center of mass from A will be
(a) 20 cm
(b) 30 cm
(c) 40 cm
(d) 60 cm

Q 11. A 6.00 kg object with its center of gravity at $(0,0) \mathrm{m}, \mathrm{a} 4.00 \mathrm{~kg}$ object at $(0,4.00) \mathrm{m}$, and a 5.00 kg object at $(3.00,0) \mathrm{m}$. Where should a fourth object of mass 9.00 kg be placed so that the center of gravity of the four-object arrangement will be at $(0,0)$?
(a) $\left(\frac{5}{3}, \frac{16}{9}\right) \mathrm{m}$
(b) $\left(\frac{16}{9}, \frac{5}{3}\right) \mathrm{m}$
(c) $\left(-\frac{5}{3},-\frac{16}{9}\right) \mathrm{m}$
(d) $\left(-\frac{16}{9},-\frac{5}{3}\right) \mathrm{m}$

Answer Key

Q. 1	a	Q. 2	a	Q. 3	c	Q. 4	d	Q. 5	d
Q. 6	b	Q. 7	a	Q. 8	d	Q. 9	c	Q. 10	b
Q. 11	c								

